Закон оптики отражения

Основные законы оптики, полное отражение

Еще до установления природы света были известны следующие основные законы оптики: закон прямолинейного распространения света в оптически однородной среде; закон независимости световых пучков (справедлив только в линейной оптике); закон отражения света; закон преломления света.

Закон прямолинейного распространения света: свет в оптически однородной среде распространяется прямолинейно.

Доказательством этого закона является наличие тени с резкими границами от непрозрачных предметов при освещении их точечными источниками света (источники, размеры которых значительно меньше освещаемого предмета и расстояния до него). Тщательные эксперименты показали, однако, что этот закон нарушается, если свет проходит сквозь очень малые отверстия, причем отклонение от прямолинейности распространения тем больше, чем меньше отверстия.

Закон независимости световых пучков: эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки или они устранены. Разбивая световой поток на отдельные световые пучки (например, с помощью диафрагм), можно показать, что действие выделенных световых пучков независимо.

Если свет падает на границу раздела двух сред (двух прозрачных веществ), то падающий луч I (рис. 229) разделяется на два — отраженный II и преломленный III , направления которых задаются законами отражения и преломления.

Закон отражения: отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения; угол i1 отражения равен углу i 1 падения:

Закон преломления: луч падающий, луч преломленный и перпендикуляр, проведен­ный к границе раздела в точке падения, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред:

(165.1)

где n 21относительный показатель преломления второй среды относительно первой. Индексы в обозначениях углов i 1, i1, i 2 указывают, в какой среде (первой или второй) идет луч.

Относительный показатель преломления двух сред равен отношению их абсолют­ных показателей преломления:

(165.2)

Абсолютным показателем преломления среды называется величина n , равная от­ношению скорости c электромагнитных волн в вакууме к их фазовой скорости v в среде:

(165.3)

Сравнение с формулой (162.3) дает, что , где e и m — соответственно электри­ческая и магнитная проницаемости среды. Учитывая (165.2), закон преломления (165.1) можно записать в виде

(165.4)

Из симметрии выражения (165.4) вытекает обратимость световых лучей. Если обратить луч III (рис.229), заставив его падать на границу раздела под углом i 2, то преломлен­ный луч в первой среде будет распространяться под углом i 1, т. е. пойдет в обратном направлении вдоль луча I .

Если свет распространяется из среды с большим показателем преломления n 1 (оп­тически более плотной) в среду с меньшим показателем преломления n 2 (оптически менее плотную) ( n 1 > n 2 ), например из стекла в воду, то, согласно (165.4),

Отсюда следует, что преломленный луч удаляется от нормали и угол преломления i 2 больше, чем угол падения i 1 (рис. 230, а). С увеличением угла падения увеличивается угол преломления (рис. 230, б, в) до тех пор, пока при некотором угле падения ( i 1= i пр) угол преломления не окажется равным p /2. Угол i пр называется предельным углом. При углах падения i 1> i пр весь падающий свет полностью отражается (рис. 230, г).

По мере приближения угла падения к предельному интенсивность преломленного луча уменьшается, а отраженного — растет (рис. 230, а—в). Если i 1= i пр, то интенсив­ность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего (рис. 230, г). Таким образом, при углах падения в пределах от i пр до p /2 луч не преломляется, а полностью отражается в первую среду, причем интенсивности отраженного и падающего лучей одинаковы. Это явление называется полным отражением.

Предельный угол i пр определим из формулы (165.4) при подстановке в нее i 2= p /2.

(165.5)

Уравнение (165.5) удовлетворяет значениям угла i пр при n 2 £ n 1. Следовательно, явление полного отражения имеет место только при падении света из среды оптически более плотной в среду оптически менее плотную.

Явление полного отражения используется в призмах полного отражения Показатель прелом­ления стекла равен n » 1,5, поэтому предельный угол для границы стекло — воздух равен i пр= arcsin (1/1,5)=42°. Поэтому при падении света на границу стекло — воздух при i > 42° всегда будет иметь место полное отражение. На рис. 231, а—в показаны призмы полного отражения, позволяющие: а) повернуть луч на 90°; б) повернуть изображение; в) обернуть лучи. Такие призмы применяются в оптических приборах (например, в биноклях, перископах), а также в рефрактометрах, позволяющих определять показатели преломления тел (по закону преломле­ния, измеряя i пр, находим относительный показатель преломления двух сред, а также абсолютный показатель преломления одной из сред, если показатель преломления другой среды известен).

Явление полного отражения используется также в световодах (светопроводах), представля­ющих собой тонкие, произвольным образом изогнутые нити (волокна) из оптически прозрачного материала. В волоконных деталях применяют стеклянное волокно, световедущая жила (сердцеви­на) которого окружается стеклом — оболочкой из другого стекла с меньшим показателем прело­мления. Свет, падающий на торец световода под углами, большими предельного, претерпевает на поверхности раздела сердцевины и оболочки полное отражение н распространяется только по световедущей жиле.

Таким образом, с помощью световодов можно как угодно искривлять путь светового пучка. Диаметр световедущих жил лежит в пределах от нескольких микрометров до нескольких мил­лиметров. Для передачи изображений, как правило, применяются многожильные световоды. Вопросы передачи световых волн и изображений изучаются в специальном разделе опти­ки — волоконной оптике, возникшей в 50-е годы XX столетия. Световоды используются в элект­ронно-лучевых трубках, в электронно-счетных машинах, для кодирования информации, в медици­не (например, диагностика желудка), для целей интегральной оптики и т. д.

www.pppa.ru

Вопрос 38. Лучевая оптика. Законы отражения и преломления. Полное внутреннее отражение. Световоды. 300

ЕЩЁ МАТЕРИАЛЫ ПО ТЕМЕ:

Лучевая оптикараздел оптики, изучающий законы распространения света в прозрачных средах и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств.

Законы отражения и преломления.

Ø Закон прямолинейного распространения света — свет в оптически однородной среде распространяется прямолинейно. В однородной среде лучи света представляют собой прямые линии.

Ø Закон независимости световых пучков — эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки или они устранены.

Ø Закон отражения — отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения (рис.2); угол отражения равен углу падения

Закон преломления — луч падающий, луч преломленный и линия нормали к границе раздела двух сред в точке падения, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред где относительный показатель преломления 2-ой среды относит-но 1-ой, который равен отношению абсолютных показателей преломления двух сред или Следоват-но, закон преломления таков: При том, что абсолютный показатель преломления то угол преломления меньше угла падения.

Полное внутреннее отражение света. Волноводы. Известно, что на границе раздела двух сред с различной диэлектрической проницаемостью (согласно формуле Максвелла ¾ h = e 1/2 ) всегда имеет место и отражение, и преломление света.

Угол преломления θ может принимать максимальное значение (нет преломленного луча – б,в). Это явление называют полным внутренним отражением(ПВО). В этом случае а Угол предельный угол ПВО.

Еще раз следует подчеркнуть, что ПВО света может происходить от границы более оптически плотной среды с оптически менее плотной средой. Явление ПВО лежит в основе так называемых волноводов (световодов). Они представляют собой гибкие трубки (волóкна) из прозрачного вещества, показатель преломления которого в центре трубки бóльший, чем во внешней ее части . Лучи света в световодах падают на стенки трубки под углом, бóльшим предельного. В результате такого падения происходит ПВО от внешней поверхности стенки трубки и свет, направленный в один торец изогнутой трубки, выходит через ее другой торец (обычно используют лазерные пучки света). Поэтому торец трубки световода можно использовать для освещения труднодоступных участков (например, в медицине для исследования органов пищеварения)

Ø . Известно, что свет для зеленых растений служит единственным источником энергии. С помощью света в растениях образуются молекулы органических веществ, необходимых для создания новых клеток. Чувствительным к свету элементом растительной клетки является пигмент фитохром. Основной его задачей является поглощение света. Биологам известно, что основная часть фитохрома сосредоточена не в надземной части растения, а в его подземной части. Возникает вопрос, как в подземную часть растения попадает свет? Оказывается, что свет в подземную часть растения попадает через его стебель, который является своего рода световодом

studepedia.org

3.2. Законы отражения и преломления света

Корпускулярная теория очень просто объясняла явления геометрической оптики, описываемые в терминах распространения световых лучей. С точки зрения волновой теории, лучи — это нормали к фронту волны. Принцип Гюйгенса также позволяет объяснить законы геометрической оптики на основе волновых представлений о природе света.

Закон отражения

Когда световые волны достигают границы раздела двух сред, направление их распространения изменяется. Если они остаются в той же среде, то происходит отражение света.

Отражение света — это изменение направления световой волны при падении на границу раздела двух сред, в результате чего волна продолжает распространяться в первой среде.

Закон отражения света хорошо известен:

Падающий луч, перпендикуляр к границе раздела двух сред в точке падения и отраженный луч лежат в одной плоскости, причем угол падения равен углу отражения.

Направления распространения падающей и отраженной волн показаны на рис. 3.2.

Рис. 3.2. Отражение света от плоской поверхности

Закон отражения может быть выведен из принципа Гюйгенса. Действительно, допустим, что плоская волна, распространяющаяся в изотропной среде, падает на границу раздела двух сред АС (рис. 3.3).

Рис. 3.3. Применение принципа Гюйгенса к выводу закона отражения

Достаточно рассмотреть два параллельных луча I и в падающем пучке. Углом падения называют угол между нормалью п к поверхности раздела и падающим лучом I. Плоский фронт AD падающей волны сначала достигнет границы раздела двух сред в точке А, которая станет источником вторичных волн. Согласно принципу Гюйгенса, из нее, как из центра, будет распространяться сферическая волна. Через время

,

то есть с запаздыванием во времени на , луч из падающего пучка придет в точку С, которая в этот момент времени также станет источником вторичной волны. Но, к этому моменту вторичная сферическая волна, распространяющаяся из точки А, уже будет иметь радиус (как и должно быть: ). Мы знаем теперь положение двух точек фронта отраженной волны — С и В. Чтобы не загромождать рисунок, мы не показываем вторичных волн, испущенных точками между А и С, но линия CD будет касательной (огибающей) ко всем из них. Стало быть, действительно является фронтом отраженной волны. Направление ее распространения (лучи II и ) ортогонально фронту CD. Из равенства треугольников ABC и ADC вытекает равенство углов

что, в свою очередь, приводит к закону отражения

На рис. 3.4 представлена интерактивная модель отражения света.

Рис. 3.4. Изучение закона отражения света

Закон преломления

Если световые волны достигают границы раздела двух сред и проникают в другую среду, то направление их распространения также изменяется — происходит преломление света.

Преломление света — это изменение направления распространения световой волны при переходе из одной прозрачной среды в другую.

Направление распространения падающей и преломленной волны показано на рис. 3.5.

Рис. 3.5. Преломление света на плоской границе раздела двух прозрачных сред

Закон преломления гласит:

Падающий луч, перпендикуляр к границе раздела сред в точке падения и преломленный луч лежат в одной плоскости, причем отношение синуса угла падения к синусу угла преломления постоянно для данной пары сред и равно показателю преломления второй среды относительно первой

Здесь показатель преломления среды, в которой распространяется преломленная волна, показатель преломления среды, в которой распространяется падающая волна.

Закон отражения также вытекает из принципа Гюйгенса. Рассмотрим (рис. 3.6) плоскую волну (фронт АВ), которая распространяется в среде с показателем преломления , вдоль направления I со скоростью

Эта волна падает на границу раздела со средой, в которой показатель преломления равен , а скорость распространения

Рис. 3.6. К выводу закона преломления света с помощью принципа Гюйгенса

Время, затрачиваемое падающей волной для прохождения пути ВС, равно

За это же время фронт вторичной волны, возбуждаемой в точке А во второй среде, достигнет точек полусферы с радиусом

В соответствии с принципом Гюйгенса положение фронта преломленной волны в этот момент времени задается плоскостью DC, а направление ее распространения — лучом III, перпендикулярным к DC. Из треугольников и следует

online.mephi.ru

Закон оптики отражения

3.1. Основные законы геометрической оптики

Основные законы геометрической оптики были известны задолго до установления физической природы света.

Закон прямолинейного распространения света : в оптически однородной среде свет распространяется прямолинейно. Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны. Таким образом, геометрическая оптика, опирающаяся на представление о световых лучах, есть предельный случай волновой оптики при λ → 0 . Границы применимости геометрической оптики будут рассмотрены в разделе о дифракции света.

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а часть пройдет через границу и продолжит распространяться во второй среде.

Закон отражения света : падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости ( плоскость падения ). Угол отражения γ равен углу падения α.

Закон преломления света : падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:

Закон преломления был экспериментально установлен голландским ученым В. Снеллиусом в 1621 г.

Постоянную величину n называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления .

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ1 к скорости их распространения во второй среде υ2:

Абсолютный показатель преломления равен отношению скорости света c в вакууме к скорости света υ в среде:

Рис 3.1.1 иллюстрирует законы отражения и преломления света.

Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.

При переходе света из оптически более плотной среды в оптически менее плотную n 2 1 – абсолютный показатель преломления первой среды.

Для границы раздела стекло–воздух ( n = 1,5 ) критический угол равен αпр = 42° , для границы вода–воздух ( n = 1,33 ) αпр = 48,7° .

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов , которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис 3.1.3). Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой .

physics.ru

Оптика. Закон отражения света. Коэффициент отражения.

Закон отражения характеризует изменение направленности луча света при столкновении с отражающей поверхностью.

Он заключается в том, что и падающий, и отраженный луч размещены в единой плоскости с перпендикуляром к поверхности, и этой перпендикуляр делит угол между указанными лучами на одинаковые составляющие.

Чаще его упрощенно формулируют так: угол падения и угол отражения света одинаковые:

Закон отражения основывается на особенностях волновой оптики. Экспериментально он был обоснован Евклидом в III веке до н.э. Его можно считать следствием использования принципа Ферма для зеркальной поверхности. Также этот законы может быть сформулирован как следствие принципа Гюйгенса, согласно которому всякая точка среды, до которой дошло возмущение, выступает источником вторичных волн.

Любая среда специфически отражает и поглощает световое излучение. Параметр, описывающий отражательную способность поверхности вещества, обозначают как коэффициент отражения (ρ или R). Количественно коэффициент отражения равняется соотношению потока излучения, отраженного телом, к потоку, попавшему на тело:

Согласно закону сохранения энергии, сумма коэффициента отражения и коэффициентов поглощения, пропускания и рассеяния составляет единицу.

Этот коэффициент обусловлен многими факторами, к примеру, составом излучения и углом падения.

Свет полностью отражается от тонкой плёнки серебра или жидкой ртути, нанесённой на лист стекла.

Выделяют диффузное и зеркальное отражение.

www.calc.ru